Structural and Sedimentary records of the Oligocene revolution in the Western Alpine arc
نویسنده
چکیده
The northwestwards-directed Eocene propagation of the Western Alpine orogen is linked with (1) compressional structures in the basement and the Mesozoic sedimentary cover of the European foreland, well preserved in the External Zone (or Dauphiné Zone) of the Western Alps, and (2) tectono-sedimentary features associated with the displacement of the early Tertiary foreland basin. Three major shortening episodes are identified: A pre-Priabonian deformation D1 (N-S shortening), supposedly linked with the Pyrenean-Provence orogeny, and two Alpine shortening events D2 (Nto NW-directed) and D3 (W-directed). The change afficher lignesfrom D2 to D3, which occurred during early Oligocene time in the Dauphiné zone, is demonstrated by a high obliquity between the trends of the D3 folds and thrusts, which follow the arcuate orogen, and of the D2 structures which are crosscut by them. This change is also recorded in the evolution of the Alpine foreland basins: the flexural basin propagating NW-wards from Eocene to earliest Oligocene shows thin-skinned compressional deformation, with syn-depositional basin-floor tilting and submarine removal of the basin infill above active structures. Locally, a steep submarine slope scar is overlain by kilometricscale blocks slided NW-wards from the orogenic wedge. The deformations of the basin floor and the associated sedimentary and erosional features are kinematically consistent with D2 in the Dauphiné foreland. Since ~32 Ma ago, the previously subsiding areas were uplifted and the syntectonic sedimentation shifted westwards. Simultaneously, the paleo-accretionnary prism which developped during the previous, continental subduction stage was rapidly exhumed during the Oligocene collision stage due to westward indenting by the Adriatic lithosphere, which likely enhanced the relief and erosion rate. The proposed palinspastic restoration takes into account this two-stage evolution, with important northward transport of the distal passive margin fragments (Briançonnais) involved in the accretionnary prism before the formation of the western arc, which now crosscuts the westward termination of the ancient orogen. By early Oligocene, the Ivrea body indentation which was kinematically linked with the Insubric line activation initiated the westward escape and the curvature of the arc was progressively acquired, as recorded by southward increasing counter-clockwise rotations in the internal nappes. We propose that the present N-S trend of the Ivrea lithospheric mantle indenter which appears roughly rectilinear at ~15 km depth could be a relict of the western transform boundary of Adria during its northward Eocene drift. The renewed Oligocene Alpine kinematics and the related change in the mode of accomodation of Africa-Europe convergence can be correlated with deep lithospheric causes, i.e. partial detachment of the Tethyan slab and/or a change in motion of the Adria plate, and was enhanced by the Edirected rollback of the eastern Ligurian oceanic domain and the incipient Ligurian rifting. in su -0 06 63 36 7, v er si on 1 26 J an 2 01 2 Author manuscript, published in "Journal of Geodynamics 56-57 (2012) 18-38 GEOD-1101" DOI : 10.1016/j.jog.2011.11.006
منابع مشابه
Tectonosedimentary evolution of the basins in Central Alborz, Iran
Evidence of at least ten different tectonic- controlled sedimentary basins can be recognized in the central part of the Alborz Mountains in the Middle part of the Alpine-Himalayan belt. They formed from Neoprotrozoic to recent time as the results of the relative plate motion in southwest of Asia in Tethyan realm. The basins include: (1) Prototethys Late Neo-Proterozoic to Early Ordovician epi-c...
متن کاملکانسار مگنتیت- آپاتیت خانلق، شمال غربی نیشابور: کانیشناسی، ساخت و بافت، دگرسانی و تعیین مدل
Khanlogh magnetite-apatite deposit is located in northwest of Neyshabour. This area is situated in Binaloud structural zone and east of Tertiary Quchan-Sabzevar magmatic arc. Geology of the area is dacitic volcanic rock intruded by Oligocene subvolcanic rocks with composition of quartz monzodiorite and granodiorite. Miocene sedimentary rocks trusted on them. The magmatism in the area shows char...
متن کاملتوالی سنگشناسی و ویژگیهای ژئوشیمیائی سنگهای آتشفشانی فاز دوی پالئوژن در منطقه دیلمان، البرز باختری
Deylaman area lies on Paleogene volcanic rocks in Western Alborz near the border between Central and Western Alborz structural zones. The succession of Paleogene rocks in the area is comprised of three separate phases each of which representing one stage of volcanic events. The main purpose of this paper is to study the lithologic sequence and geochemical characteristics of phase two volcanic r...
متن کاملBiostratigraphy and paleo-ecological reconstruction on Scleractinian reef corals of Rupelian-Chattian succession (Qom Formation) in northeast of Delijan area
In this research, biostratigraphy and paleo-ecological reconstruction of the Qom Formation deposits in Bijegan village, northeast ofDelijan, are discussed. The studied section is situated in the western margin of the Urumieh-Dokhtar magmatic arc (the intra-arc basin).The Qom Formation deposits at the studied area are Rupelian-Chattian in age. Larger benthic foraminifers are used for biostratigr...
متن کاملOligocene stratigraphy of the Northern Subcoastal Fars Zone (Tang-e-Khoshk, Zagros structures, Iran): Biostratigraphy and Paleoenvironment
Objective: The Asmari Formation is characterised by alternation thick carbonate and marl sequence of the Oligocene- Miocene in the Zagros Basin, southwest of Iran that were deposited on the shelf of Eastern Paratethys. Methods: This formation is exposed at Tang-e-Khoshk in the Fars subcoastal zone with a thickness of 286 m comprising alternation of medium and thick to massive bedded carbonates,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012